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Complete Eigenvalue Analysis of Inhomogeneously

Dielectric Loaded 13vo Conductor Guiding Structures

Magdy Z. Mohamed and John M. Jarem

Abstract— A complete full-wave eigenvaloe analysis is presented for

inhomogeneously filled guiding structures that support TEM mode. The

analysis is based on treating the transverse inhomogeneity of the tilling

dielectric as a polarization current that excites the corresponding empty
guiding system. The problem is formulated to determiue the quasi-TEM

and higher order modes of the system. The mode propagation constants

squared appear as eigenvalues of the problem, and the correspondhg
eigenvectors represent the expansion coefficients of the field modes.

The strength of the formulation is verified by its application to the
problem of the partially dielectric-filled parallel-plate waveguide. The
results of the analysis are compared to the exact solution and a vari-

ational solutiou. The quasi-TEM mode variation versus permittivity
and frequency variation is studied. The convergence and dkpersion
characteristics of the method are presented.

I. INTRODUCTION

Omar and Shtinemann [1] studied the complex and backward-wave

modes in inhomogeneously and anisotropically filled waveguides.

In their study, they presented an interesting approach to solve the

problem of EM wave propagation in inhomogeneous waveguides.

Their eigenvalue formulation was based on using TE and TM modes

of an empty waveguide as expansion functions, with which the

propagating modes of the corresponding inhomogeneous waveguide

could be determined.

In the present paper, the formulation of [1] will be extended to

solve for the quasi-TEM mode, as well as higher order modes, of the

inhomogeneously dielectric loaded mtdticonductor guiding systems.

A limitation of [1] is that, at present, it only applies to hollow

waveguides. The purpose of the present chapter will be to extend this

method to multi-conductor systems. This extension will be performed

by adding a TEM mode to the TE and TM expansion mode sets that

[1] is already using. The extension is non-trivial and the results of

the analysis show that a significantly different eigenvalue equation

form than that which was presented in [1] must be solved when a

TEM mode is added to the expansion set of [1].

The analytical expressions of the eigenmodes of the homogeneous

waveguide may be obtained for a class of coaxial rectangular waveg-

uides using the Generalized Spectral Domain (GSD) method of [2].

A more general and accurate method to determine the eigenmodes

of the coaxial rectangular waveguide using a multipole method is

presented in [3]. The multipole method [3] can be applied to the

shielded microstrip considering the inner conductor as a wide flat

rectangular strip or as a flattened ellipse of high eccentricity which

approximates the shape of the rectangular strip.

II. ANALYSIS

Consider a waveguiding system consisting of two perfect con-

ductors enclosing an inhomogeneous dielectric material with cross

section S. See Fig. 1. The longitudinal vector is denoted by az and

the transverse vector is denoted by ~. The system is uniform in the
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Fig. 1. (a) Inhomogeneously dielectric filled axially wire loaded waveguide.
(b) Geometry of a partially filled parallel plate waveguide.

longitudinal direction. The filling dielectric medium is assumed to

have transversely dependent relative permittivity s, = s,(~) and a

constant relative permeability p. = 1.

In the present section, an eigenvalue problem will be formulated

to solve the problem of full-wave propagation in the system shown

in Fig. 1(a), The method presented in [1] will be extended to

solve for the quasi-TEM and higher-order modes in the general

guiding structure shown in Fig. 1(a). The important point about the

present analysis is that it presents a good study of the effect of

the inhomogeneity on the TEM mode, which is supported by the

corresponding homogeneous system.

The axial electric nod magnetic fields of the empty system are

defined as in [1]. To be consistent with [1], we further define the

electrostatic potential (describing the TEM mode) between the two

conductors to be e,o ( Y’ )

V~e=O = O (1)

The TE and TM modes may be normalized as in [1]. Refernng to

Barrington [28, pp. 382–383], the TEM mode is normalized according

to

J
(V,ezo)2 d,!$ = 1. (2)

s

Adding the TEM transverse components to the expansion expres-

sions presented in [1], the total transverse fields may be expanded

Z[jwpOBm
Vte.n + —

knh.=1

A.——
% 1

(ii, X Vthz. )

}

(3)

where AO, An, Bn, DO, and D. are the series expansion coefficients.

Applying Maxwell’s first equation (V x ~ = –jwuo ~) to (3)

we get

Do = _.Ao
,4;

(4)
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The total transverse components of the exciting polarization current

~ will then be defined as

4
.JtT = (v x 2t-jLdm7)t (5)

The AO and DO expansion coefficients are related to the exciting

current ~ by

/

~~P’(AO – j~DO) = & ~ ~~y . v~e,o dS (6)

Using (1)<6) we get the following infinite system of linear equa-

tions, which determine the relation between the expansion coefficients

Ao, An, Bn, Do, and Dn

([q - k:[s])Q =MS]4 (7a)

R;oAo + &lA – j~~O = – jWJJO~OIa (7b)

~oAO + [Re]4 – jp~ = – jLLJNo[T]~ (7C)

(k:[Rh] - (Ah])E - B2E

=jLJEOZlo-40 + jWEO[T]td (7d)

where go, and ~lo are column vectors with elements R;,0, and
Tn,0, respectively; &l and Z&I are row vectors with elements

R~,n and To,~, respectively. ~, E, ~, [Ak], [R], [S], [T], and [T]’
are defined in [1]. R~o and the elements of El, GO, rol, ~lo are

given by

R;. =
/

cr(Vtezo)2 a%
s

R:,n = &
J

e.Vte,o Vte.. dS
s

R:,. = R:,n

To,. = ~
Iknh s

&r(Vte,o X Vthzn) iizdS

Tn,o =To,n (8)

It may be noticed for the case of inhomogeneously-filled

single conductor waveguides, that the term R~o and the vectors

El, ~., Z’ol, and TIo disappear. And in turn. the whole formulation

reduces to that presented in [1].

III. EIGENVALUE PROBLEM

Equations (4) and (7a) are used to eliminate DO and Q, respec-

tively, from the rest of (7). The following eigenvalue problem results

[

[s+]-l[R+] jLJ/%o[s+]-l[T+]

-jWjLOIT+]’ ( :;[R’] - [Ak]) 1

[$1=’2[%

where

[T+] = [f;j] , and

[

1
[s+] = ~

Qt

Q [/$:[1]– [s]-l]-’ 1

(9)
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Fig. 2. Plots of the relative error, defined in (15), versus c,2 for the
waveguide shown m Fig. 1(b). Where IV is the total number of modes

considered in the series expansions in (3).

~ and ~t are column and row null vectors, respectively, and [S]-l

and [S+] – 1 are the inverse matrices of [S] and [S+], respectively.

Again, for the case of single conductor inhomogeneous waveguide

the following reductions to the original formulation in [11 occur: A+

to ~, [R+] to [R], [T+] to [T], and [S+] to [k~[l] – [S]-’] -l.

Note that the final eigenvalue equation (9) is significantly different

than the eigenvalue equation [1, Eq. 10]. The difference between both

equations is mainly represented by introducing the new submatrices

S~,R~, and T+.

IV. PARTIALLY-FILLED PARALLEI.-PLATE WAVEGUIDE

Consider the inhomogeneous parallel-plate waveguide, shown in

Fig. l(b), which is divided into two regions having different relative

dielectric constants e~l and erz. The electrostatic potential e.o, the

axial electric field e,n, and the axial magnetic field hr,, may be

defined [5, pp. 133–1 34] for the empty guide as:

L,
e,o = Eog,

e,n = En sink.~y,

h.n = Hn COSk,,rzy (10)

where kcn = (Tzr/b) and n = 1,2,3, ~.. . The gradients of these

functions are one dimensional and have only one component in y

direction.

The two off-diagonal submatrices of the characteristic matrix in

(9) will vanish. The eigenvalue problem will be composed of two

decoupled parts, the first part being the quasi-TEM and TM fields
represented by ~+, and the second part being the TE field represent
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Fig. 3. Plots of the magnetic field component Hz versus y for the waveguide

shown in Fig. 1(b) (II” = 30). {A—Exact solution, o —Present method,
❑—Variational method].

by ~, Equation (9) is, thenx decomposed to

[S+] -’[R+]4+ = /324+ (11)

and

(k:[R’] - [Ak])~ = $’~ (12)

The exact solution of the problem, defined in Fig. l(b), is well-

known, e.g., see Barrington [4, pp. 158- 191], and may be determined

for the TM modes solving the following system of equations:

k;l + /32 =w2E1p1

k;2 + p2 =u~&2p2

(kvl/el) tan k,, d

= - (kg2/z2 ) tan[kv2(b - d)] (13)

&d the axial electric field, in each region, is represented by

e=l =cl coskvl~,

ez2 = C2cos[kg2(b – g)] (14)

where the suffixes 1 and 2 stand for region number, and kU is the

cut off wavenumber,

Consider the waveguide shown in Fig. l(b) with b = 1, d = 2/3,

and Erl = 1. (11) and (13) are solved on the CRAY supercomputer

using well-known IMSL routines: the results are computed, and

the relative error e is plotted versus e,z in Fig. 2(a) for different

dimensions of the characteristic matrix, N, in (11) when k. = 1. In

Fig. 2(b) the relative error e is plotted vesus S,2 for different values

of kO when ~ = 30. The relative error e is defined by

(15)e = (p(n) – /3(13))//3(13)
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Fig. 4. Plots of the electric field component Ev versus y for the waveguide
shown in Fig. 1(b) (IV = 30). [A—Exact solution, o —Present method,
El-Variational method].

where P(I ~, and 13(13) are the phase constants resulted from solving

(11) and (13), respectively.

From Fig. 2(a), it can be seen that the method converges rapidly

for dimensions of matrices in (11) larger than 30, which corresponds

to considering only 30 terms in the infinite expansion expression for

the fields in (3).
The functions defined in (10) are substituted into (3) to define

the transverse fields Hz and E?, considering only 30 terms in the

expansion. In computing the Hz and Ev two different values of &,2

are used, namely Er2 = 1.1, 3. The transverse field components Hz

and Ev of the quasi-TEM mode are plotted versus the guide width y

in Figs. 3 and 4 when kO = 1 and 3 respectively. Furthermore, the

same fields Hz and Ev, are computed using the variational method

[6] and plotted in Figs. 3 and 4. The plots in Figs. 3 and 4 show

that the solution resulting from the present method works amazingly

well and approximately coincides with the exact solution, even for

larger values of :,2, while the variational solution [6] diverges from

the exact one as E,Z increases.

V. CONCLUSION

A two-conductor system inhomogeneously filled with dielectric is

analyzed. The analysis represents a full-wave solution of the problem.
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In the analysis, the propagation characteristics of the wave are deter-

mined by formulating an eigenvalue problem, where its eigenvalues

arethe propagation constants sqttared andtheeigenvectors represent

directly the expansion coefficients of the propagating fields. The

analysis treats the inhomogeneity as a polarization current exciting

the corresponding homogeneous guiding system.

The method is used to solve the problem of electromagnetic

wave propagation in partially-filled parallel-plate waveguide. The

convergence, dispersion characteristics, and accuracy of the method

are studied and compared to the results of the variational method

[6]. The present method proved to have better accuracy than the

variational method [6].
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elimination or LU decomposition. The matrix resulting from applying

the finite-difference or finite-element method to a differential equation
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For one-, two-, and three-dimensional cases, the value of bandwidth

M are of order unity, 0( Nlf 2), and O (N2f3 ). respectively, where

N is the matrix order. For a band matrix the number of required
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same order as that of matrix inversion. Thus for the two-dimensional
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waveguide problem the required computation will go as N2, when

..-. -. conventional approaches were used.
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An Efficient Numerical Procedure Using the

Shifted Power Method for Analyzing Dielectric

Waveguides Whhout Inverting Matrices

Ching-Chuan Su

Abstract— A numerical procedure using the finite-difference scheme

and the shifted power method is used to analyze the propagation charac-
teristics of dielectric waveguides. The unique feature of thk procedure is

that in determining the eigenvalues corresponding to dominant modes no
operation as costly as matrix inversion, such as Gaussian elimination,
LU decomposition, or tridiagonatization, is invoked. So the proposed
procedure is rather efficient in both memory space and computer time.

Numerical results of a circular step-index fiber are presented for compar-

ison. Due to its efficiency, the proposed procedure is capable of analyzing

coupled waveguides.

I. INTRODUCTION

Applying the finite-difference or finite-element method to analyz-

ing the propagation characteristics of dielectric waveguides has been

investigated for a long time and by many people. These numerical
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After analyzing the distribution of eigenvalues of an associated

matrix in Section III, we show that the direct power method can be

used to calculate the eigenvalues and associated eigenfunctions cor-

responding to dominant modes by suitably shifting the eigenvalues.

The unique feature of this procedure is that no matrix inversion or

tridiagonalization is invoked. Thus the proposed procedure is efficient

in both computation speed and memory space and is simple in the

programming work. A major drawback of the proposed procedure is

the slow convergence rate. Some methods to accelerate this rate will

be discussed in Section V. Numerical results for circular step-index

fiber and coupled rectangular waveguides are presented in Section VI.

II. EIGENVALUE PROBLEMS

Consider a transversely inhomogeneous dielectric waveguide in

which a transverse field @ satisfies the scalar wave equation

v;7j(z,f)) -t [I$e(z,y) – /32]7J’(x,y)= 0. (1)

where k: = ti2 ~0 co, e (.L, y) denotes relative permittivity dkibution,

and @ is the propagation constant in the axial direction. Suppose

that dielectric waveguide is cladded by a homogeneous medium with

relative permittivity El and the maximum value of the permittivity

c(.r, y ) is cz. It is of convenience to express the permittivity e(.r, y) as

where the profile P(OJ,y) is zero in the cladding and its maximum

value is unity. Using the normalized propagation constant II and

normalized frequency 17:

(3)

(4)
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