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Complete Eigenvalue Analysis of Inhomogeneously
Dielectric Loaded Two Conductor Guiding Structures

Magdy Z. Mohamed and John M. Jarem

Abstract— A complete full-wave eigenvalue analysis is presented for
inhomogeneously filled guiding structures that support TEM mede. The
analysis is based on treating the transverse inhomogeneity of the filling
dielectric as a polarization current that excites the corresponding empty
guiding system. The problem is formulated to determine the quasi-TEM
and higher order modes of the system. The mode propagation constants
squared appear as eigenvalues of the problem, and the corresponding
eigenvectors represent the expansion coefficients of the field modes.

The strength of the formulation is verified by its application to the
problem of the partially dielectric-filled parallel-plate waveguide. The
results of the analysis are compared to the exact solution and a vari-
ational solution. The quasi-TEM mode variation versus permittivity
and frequency variation is studied. The convergence and dispersion
characteristics of the method are presented.

I. INTRODUCTION

Omar and Shiinemann [1] studied the complex and backward-wave
modes in inhomogeneously and anisotropically filled waveguides.
In their study, they presented an interesting approach to solve the
problem of EM wave propagation in inhomogeneous waveguides.
Their eigenvalue formulation was based on using TE and TM modes
of an empty waveguide as expansion functions, with which the
propagating modes of the corresponding inhomogeneous waveguide
could be determined.

In the present paper, the formulation of [1] will be extended to
solve for the quasi-TEM mode, as well as higher order modes, of the
inhomogeneously dielectric loaded multiconductor guiding systems.
A limitation of [1] is that, at present, it only applies to hollow
waveguides. The purpose of the present chapter will be to extend this
method to multi-conductor systems. This extension will be performed
by adding a TEM mode to the TE and TM expansion mode sets that
[11 is already using. The extension is non-trivial and the results of
the analysis show that a significantly different eigenvalue equation
form than that which was presented in [1] must be solved when a
TEM mode is added to the expansion set of [1].

The analytical expressions of the eigenmodes of the homogeneous
waveguide may be obtained for a class of coaxial rectangular waveg-
uides using the Generalized Spectral Domain (GSD) method of [2].
A more general and accurate method to determine the eigenmodes
of the coaxial rectangular waveguide using a multipole method is
presented in [3]. The multipole method [3] can be applied to the
shielded microstrip considering the inner conductor as a wide flat
rectangular strip or as a flattened ellipse of high eccentricity which
approximates the shape of the rectangular strip.

II. ANALYSIS

Consider a waveguiding system consisting of two perfect con-
ductors enclosing an inhomogeneous dielectric material with cross
section S. See Fig. 1. The longitudinal vector is denoted by e and
the transverse vector is denoted by 7. The system is uniform in the
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(a) Inhomogeneously dielectric filled axially wire loaded waveguide.
(b) Geometry of a partially filled parallel plate waveguide.

Fig. 1.

longitudinal direction. The filling dielectric medium is assumed to
have transversely dependent relative permittivity €, = ¢, (7 ) and a
constant relative permeability g, = 1.

In the present section, an eigenvalue problem will be formulated
to solve the problem of full-wave propagation in the system shown
in Fig. 1(a). The method presented in [1] will be extended to
solve for the quasi-TEM and higher-order modes in the general
guiding structure shown in Fig. 1(a). The important point about the
present analysis is that it presents a good study of the effect of
the inhomogeneity on the TEM mode, which is supported by the
corresponding homogeneous system.

The axial electric and magnetic fields of the empty system are
defined as in [1]. To be consistent with [1], we further define the
electrostatic potential (describing the TEM mode) between the two
conductors to be e,o(7)

View =0 1)

The TE and TM modes may be normalized as in [1]. Referring to
Harrington {28, pp. 382-383], the TEM mode is normalized according
to

/S(vtezo)? ds =1. )

Adding the TEM transverse components to the expansion expres-
sions presented in [1], the total transverse fields may be expanded
as
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where Ay, A, By, Do, and D, are the series expansion coefficients.
Applying Maxwell’s first equation (V x E = —Jjwpo fI)) to 3)

we get
Do = -2 4, @

K
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The total transverse components of the exciting polarization current
—
J will then be defined as

— — R —
JtT=(VXH—]w€0E)t (5)

The Ao and Dy expansion coefficients are related to the exciting
current T by

¢’ (Ao ~ Do) =

—
. /\JW-VMNds ©)
JWen Js

Using (1)(6) we get the following infinite system of linear equa-

tions, which determine the relation between the expansion coefficients
A07An7Bna DO) and Dn
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where Rf,, and T, are column vectors with elements R o, and
T 0, respectively; 125, and I,, are row vectors with elements
R§.,, and Tp,n, respectively. A, B, D,[A*],{R],[S],[T], and [T]*
are defined in [1]. R§, and the elements of RS, B,.T,;, T, are
given by

RSOZ/ET(VtC:o)2 dS
S

RS —i/ervtezo-vtem is
S

O B
Rn,O = Rg,n
TO,n == 1 / 5r(vte:0 x vthzn) " dz ds
knh s
Tn,O =T0,n (8)

It may be noticed for the case of inhomogeneously-filled
single conductor waveguides, that the term Rj, and the vectors
R, .R%,,T,,, and T1 disappear. And in turn, the whole formulation
reduces to that presented in [1].

III. EIGENVALUE PROBLEM

Equations (4) and (7a) are used to eliminate Dy and D, respec-
tively, from the rest of (7). The following eigenvalue problem results
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Fig. 2. Plots of the relative error, defined in (15), versus &, for the
waveguide shown in Fig. 1(b). Where N is the total number of modes
considered in the series expansions in (3).

O and O° are column and row null vectors, respectively, and [S]™*
and [ST]™! are the inverse matrices of [S] and [S7], respectively.
Again, for the case of single conductor inhomogeneous waveguide
the following reductions to the original formulation in [1] occur: AT
to A,[R*] to [R],[T] to [T]. and [ST] to [K2{I] — [S]~*]"1.

Note that the final eigenvalue equation (9) is significantly different
than the eigenvalue equation [1, Eq. 10]. The difference between both
equations is mainly represented by introducing the new submatrices
ST.RT, and T.

IV. PARTIALLY-FILLED PARALLEL-PLATE WAVEGUIDE

Consider the inhomogeneous parallel-plate waveguide, shown in
Fig. 1(b), which is divided into two regions having different relative
dielectric constants €1 and £,0. The electrostatic potential e.q, the
axial electric field e.,. and the axial magnetic field k., may be
defined [S, pp. 133-134] for the empty guide as:

€20 = Eoy,

€xn = Ensinkeny,

h., =H, cos kcny (10)
where ken = (nm/b) and n = 1,2,3,--- . The gradients of these

functions are one dimensional and have only one component in y
direction.

The two off-diagonal submatrices of the characteristic matrix in
(9) will vanish. The eigenvalue problem will be composed of two
decoupled parts, the first part being the quasi-TEM and TM fields
represented by AT, and the second part being the TE field represent
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Fig. 3. Plots of the magnetic field component H . versus y for the waveguide
shown in Fig. 1(b) (N = 30).[A—Exact solution, o —Present method,
[}—Variational method].

by B. Equation (9} is, then, decomposed to
[T ' RTIAT = 57 At an
and |
(KS[R"] — [A"])B = 5B (12)

The exact solution of the problem, defined in Fig. 1(b), is well-
known, e.g., see Harrington [4, pp. 158-191], and may be determined
for the TM modes solving the following system of equations:

k?ﬂ -+ /32 =w261/J,],
kgz + ﬂQ =w2€2[,L2

(ky1/ei)tanky, d ‘
= — (ky2/e2) tanfkyo (b — d)] (13)
and the axial electric field, in each region, is represented by
ex1 =c1 cos ky1y. .
€22 = Ca cos[ky2 (b — )] (14)

where the suffixes 1 and 2 stand for region number, and &, is the
cut off wavenumber,

Consider the waveguide shown in Fig. 1(b) with b = 1,d = 2/3,
and £,y = 1. (11) and (13) are solved on the CRAY supercomputer
using well-known IMSL routines: the results are computed, and
the relative error e is plotted versus er2 in Fig. 2(a) for different
dimensions of the characteristic matrix, N, in (11) when &k = 1. In
Fig. 2(b) the relative error e is plotted vesus <o for different values
of kp when NV = 30. The relative error e is defined by

e = By — Busy)/ Basy (15)
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Fig. 4. Plots of the electric field component I, versus y for the waveguide
shown in Fig. 1(b) (N = 30).[A—Exact solution, o —Present method,
[} —Variational method].

where B(11) and B3y are the phase constants resulted from solving
(11) and (13), respectively.

From Fig. 2(a), it can be seen that the method converges rapidly
for dimensions of matrices in (11) larger than 30, which corresponds
to considering only 30 terms in the infinite expansion expression for
the fields in (3).

The functions defined in (10) are substituted into (3) to define
the transverse fields H,. and F,, considering only 30 terms in the
expansion. In computing the I, and £, two different values of £,
are used, namely €,2 = 1.1, 3. The transverse field components H,
and E, of the quasi-TEM mode are plotted versus the guide width y
in Figs. 3 and 4 when ko = 1 and 3 respectively. Furthermore, the
same fields H, and E,, are computed using the variational method
[6] and plotted in Figs. 3 and 4. The plots in Figs. 3 and 4 show
that the solution resulting from the present method works amazingly
well and approximately coincides with the exact solution, even for
larger values of .3, while the variational solution [6] diverges from
the exact one as £, increases.

V. CONCLUSION

A two-conductor system inhomogeneously filled with dielectric is
analyzed. The analysis represents a full-wave solution of the problem.
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In the analysis, the propagation characteristics of the wave are deter-
mined by formulating an eigenvalue problem, where its eigenvalues
are the propagation constants squared and the eigenvectors represent
directly the expansion coefficients of the propagating fields. The
analysis treats the inhomogeneity as a polarization current exciting
the corresponding homogeneous guiding system.

The method is used to solve the problem of electromagnetic
wave propagation in partially-filled parallel-plate waveguide. The
convergence, dispersion characteristics, and accuracy of the method
are studied and compared to the results of the variational method
[6]. The present method proved to have better accuracy than the
variational method [6].
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An Efficient Numerical Procedure Using the
Shifted Power Method for Analyzing Dielectric
Waveguides Without Inverting Matrices

Ching-Chuan Su

Abstract— A numerical procedure using the finite-difference scheme
and the shifted power method is used to analyze the propagation charac-
teristics of dielectric waveguides. The unique feature of this procedure is
that in determining the eigenvalues corresponding to dominant medes no
operation as costly as matrix inversion, such as Gaussian elimination,
LU decomposition, or tridiagonalization, is invoked. So the proposed
procedure is rather efficient in both memory space and computer time.
Numerical results of a circular step-index fiber are presented for compar-
ison. Due to its efficiency, the proposed procedure is capable of analyzing
coupled waveguides.

1. INTRODUCTION

Applying the finite-difference or finite-element method to analyz-
ing the propagation characteristics of dielectric waveguides has been
investigated for a long time and by many people. These numerical
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methods render the partial differential equation governing the propa-
gation characteristics of dielectric waveguides to linear simultaneous
algebraic equations, which are manageable on a computer. In essence
the matrix equation is an eigenvalue problem. Depending on the
mathematical formulation, the properties of boundary conditions, and
the methods of evaluating the eigenvalues, the eigenvalue problem
can be written in several forms, which will be discussed in detail in
Section II.

In waveguide theory the important eigenvalues corresponding to
dominant guided modes in which one is interested are the largest
propagation constants or the lowest frequencies. To calculate these
particular eigenvalues several methods have been employed, such as
the zero-determinant searching, the inverse power method [1, ch. 10],
the subspace iteration method [2] (a variation of the inverse power
method using simultaneous iteration), and the method involving tridi-
agonalization and Sturm sequence [1, chs. 8 and 9]. For evaluating
the determinant of a matrix or for inverting a matrix in using the
inverse power method one needs to use, for example, Gaussian
elimination or LU decomposition. The matrix resulting from applying
the finite-difference or finite-element method to a differential equation
is banded. The bandwidth grows with the dimension of the problem.
For one-, two-, and three-dimensional cases, the value of bandwidth
M are of order unity, O(N*/2), and O(N?/3), respectively, where
N is the matrix order. For a band matrix the number of required
operations for matrix inversion is of order O(M 2 V). The number of
required operations for tridiagonalizing a symmetric matrix is of the
same order as that of matrix inversion. Thus for the two-dimensional
waveguide problem the required computation will go as N2, when
conventional approaches were used.

After analyzing the distribution of eigenvalues of an associated
matrix in Section [I, we show that the direct power method can be
used to calculate the eigenvalues and associated eigenfunctions cor-
responding to dominant modes by suitably shifting the eigenvalues.
The unique feature of this procedure is that no matrix inversion or
tridiagonalization is invoked. Thus the proposed procedure is efficient
in both computation speed and memory space and is simple in the
programming work. A major drawback of the proposed procedure is
the slow convergence rate. Some methods to accelerate this rate will
be discussed in Section V. Numerical results for circular step-index
fiber and coupled rectangular waveguides are presented in Section VI.

II. EIGENVALUE PROBLEMS

Consider a transversely inhomogeneous dielectric waveguide in
which a transverse field ¢ satisfies the scalar wave equation

Viv(z,y) + [koe(x, y) — B (x,y) = 0. )

where k% = w?poco, (., y) denotes relative permittivity distribution,
and [ is the propagation constant in the axial direction. Suppose
that dielectric waveguide is cladded by a homogeneous medium with
relative permittivity €; and the maximum value of the permittivity
e(r, y) is 2. It is of convenience to express the permittivity e(x.y) as

5(1‘7!/)=€1+(€2—€L)P(1'7y)» (2)

where the profile P(z,y) is zero in the cladding and its maximum
value is unity. Using the normalized propagation constant B and
normalized frequency V:

p= (Bk) —a 3)
€2 — €1
V =kobvez — &1/, 4)
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